Some identities for multiple Hurwitz-zeta values

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Some Euler-Type Identities for Multiple Zeta Values

. . . , s k are positive integers with s 1 > 1. For k ≤ n, let E(2n, k) be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. The well-known result E(2n, 2) = 3ζ(2n)/4was extended to E(2n, 3) and E(2n, 4) by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbers E(2n, k) and then ...

متن کامل

Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences

Abstract. In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher’s identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta fu...

متن کامل

On Some Integrals Involving the Hurwitz Zeta

We establish a series of integral formulae involving the Hurwitz zeta function. Applications are given to integrals of Bernoulli polynomials, log Γ(q) and log sin(q).

متن کامل

Some Identities for the Riemann Zeta-function

Several identities for the Riemann zeta-function ζ(s) are proved. For example, if s = σ + it and σ > 0, then ∞ −∞ (1 − 2 1−s)ζ(s) s 2 dt = π σ (1 − 2 1−2σ)ζ(2σ). Let as usual ζ(s) = ∞ n=1 n −s (ℜe s > 1) denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of |ζ(1 2 + it)| 2k , k ∈ N, weighted by suitable functions. In particular, the prob...

متن کامل

Analytic continuation of multiple Hurwitz zeta functions

We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SCIENTIA SINICA Mathematica

سال: 2011

ISSN: 1674-7216

DOI: 10.1360/012011-194